AI-Based Job Shop Scheduling in Manufacturing Execution System: A Review Perspective

  • Paper Title: AI-Based Job Shop Scheduling in Manufacturing Execution System: A Review Perspective
  • Journal Name: Elsevier computers & industrial engineering
  • Abstract: With the annual rise in the number of creative startup enterprises in the Manufacturing Execution System (MES), there is a rising need for research on the job-shop scheduling problem(JSSP). JSSP, a complex NP-hard issue, aims to optimize allocating scarce resources to improve production efficiency. JSS is employed in several sectors, such as warehouse order packaging and manufacturing on production lines. During practical circumstances, the operating context might become Complicated owing to dynamic events such as the delivery of tasks at different times, delays in job completion, machine malfunctions, or unexpected incidents. A lot of scheduling heuristics, including dispatching rules, have been used to make good schedules by effectively prioritizing candidates, like manufacturing machines. Recently, Artificial Intelligence (AI), specifically Deep Reinforcement Learning (DRL), has proven advantageous in autonomously acquiring scheduling heuristics for JSS, mostly because of its versatility, effectiveness, and efficiency. Regrettably, there is an insufficient number of surveys accessible to analyze and evaluate the benefits and drawbacks of these active initiatives. This work seeks to address this deficiency by undertaking a thorough investigation of Bio-inspired heuristic algorithms and different types of AI algorithms for JSS. This article has provided a concise overview of the utilized learning models, primary objectives, datasets, and performance metrics. The outcomes are presented in tabular format, which enables a clear and concise exhibition of the discoveries. In addition, this article analyzes certain issues and hurdles to recommend specific areas that may be targeted for the future advancement of autonomous scheduling heuristic design.
  • Status: Submitted
  • Journal Type: International
  • Cite:
  • Author: shanto
  • Write Date: March 25, 2024, 1:30 p.m.
  • Update Date: March 25, 2024, 1:30 p.m.
  • Visit Count: 1
  • Acknowledgment: None
  • File: No file attached